B-math 2nd year Final Exam Subject : Analysis III

Time : 3.00 hours

Max.Marks 60.

1. Let $\vec{r} = x \ \vec{i} + y \ \vec{j}$ denote the position vector of a point in the set $D := \{(x, y) : 1 < x^2 + y^2 < 25\}$ and $r := \sqrt{x^2 + y^2}$. Let $\vec{F}(x, y) := \partial_y(\log r) \ \vec{i} - \partial_x(\log r) \ \vec{j}$. Let $\alpha(t)$ be the parametrisation of a piecewise smooth simple closed curve $C \subset D$. Find all possible values of $\int_C \vec{F} \cdot d\alpha$. (9)

2. Let S be the solid torus in \mathbb{R}^3 generated by rotating the disc $D := \{(x, z) : (x-2)^2 + z^2 \leq 1\}$ about the z-axis.

a) Find a parametric representation of S.

b) Let $\vec{F} = P \ \vec{i} + Q \ \vec{j} + R \ \vec{k}$ be a vector field on S, where $P := \frac{-y}{x^2 + y^2}, Q := \frac{x}{x^2 + y^2}, R := z$ for $(x, y, z) \in S$. Show that curl $\vec{F} = 0$.

c) Show that $\vec{F} \neq \nabla \phi$ for any C^1 function ϕ in S (Hint : consider the line integral of F along a suitable curve lying in S). Explain why this does not contradict the result in b). (4+2+5)

3. Let $(X, Y) : \mathbb{R}^2 \to \mathbb{R}^2, X(u, v) := u + v, Y(u, v) := v - u^2, (u, v) \in \mathbb{R}^2$. a) Compute the Jacobian of this transformation.

b) Let T be the triangle in \mathbb{R}^2 with vertices (0,0), (2,0), (0,2). Let S be the image of T under the map (X, Y). Calculate the area of S.

c) Let $Q := \{(x,y) : |x| + |y| \le 1\}$ and $f : [-1,1] \to \mathbb{R}$ be continuous and define $g(x,y) := f(x+y) (x,y) \in Q$. Show that g is Reimann integrable on

$$Q \text{ and } \iint_{Q} g(x,y) dx \ dy = \int_{-1}^{1} f(u) \ du.$$
 (2+4+5)

4. Let $a > 0, n \ge 2$ and $S_n(a) := \{(x_1, \dots, x_n) : |x_i| + |x_n| \le a, i = 1, \dots, n-1\} \subset \mathbb{R}^n$. Calculate the volume of $S_n(a)$. Hint : what is the relationship between the volumes of $S_n(a)$ and $S_n(1)$? (8)

5. Let $f_n, g: (0, \infty) \to \mathbb{R}, n \ge 1$, where f_n and g are Reimann integrable on every closed and bounded interval [a, b]. Let $|f_n(x)| \le g(x), x \in (0, \infty)$. Suppose that $\int_0^\infty g(x) dx := \lim_{n \to \infty} \int_{\frac{1}{n}}^n g(x) dx < \infty$. Let $f_n(x) \to f(x)$ for every $x \in (0, \infty)$. State suitable assumptions on the sequence $\{f_n\}$ so that the following result is true and prove your result :

$$\lim_{n \to \infty} \int_0^\infty f_n(x) \, dx = \int_0^\infty f(x) \, dx \tag{8}$$

6. Let 0 < a < b and $\Phi := \{(x, y) : x = a \cos t, y = ((1 - u)b + ua) \sin t, u = ((1 - u)b + ua)$ $0 \le u \le 1, 0 \le t \le 2\pi$ } be a 2-surface in \mathbb{R}^3 .

a) Describe the boundary of the set Φ . b) Show that $\int_0^{2\pi} \frac{ab}{a^2 \cos^2 t + b^2 \sin^2(t)} dt = 2\pi$. Hint : Consider the integral $\int_C F \cdot d\alpha$ for a suitable vector field F in $\mathbb{R}^2 \setminus \{0\}$, Cwhere α is an appropriate parametrisation of the boundary C of the set Φ . (4+6)

7. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$, $f(x, y) := (e^x \cos y, e^x \sin y)$.

a) Show that f is not injective.

b) Show that there is an unbounded open connected set in \mathbb{R}^2 where f is one to one.

c) Let $a = (0, \frac{\pi}{3})$ and b = f(a). Show that f has an inverse g in a neighborhood of b and compute Dg(b). (2+2+4)